
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes - Unit 3

OVERVIEW OF THE HCS12 MICROCONTROLLER
 The HCS12 is a family of Freescale® microcontrollers (MCUs) targeted to automotive and process control applications.

MCUs incorporate a processor (CPU) and peripherals (e.g., memory, serial communication interfaces, timer functions, A/D
converter) in a single chip. Among the peripherals available, we can mention:
- Input Capture (IC)
- Output Compare (OC)
- Pulse-Width Modulation (PWM)
- Controller area network (CAN)
- Byte data link control (BDLC)

- 8-channel (10 bits per channel) ADC modules.
- Serial peripheral interface (SPI)
- Serial communication interface (SCI)
- Interintegrated circuit (I2C)

 Most HCS12 devices have a bus clock speed of 25 MHz and include on-chip SRAM (Static RAM) and EEPROM to hold data

and/or programs. External memory can also be used.
 HCS12 Microcontrollers use on-chip flash memory to hold Program Memory.

Flash memory: It can be erased and reprogrammed electrically. Most microcontrollers nowadays use on-chip flash memory
as their program memory (In a PC, the BIOS is stored in a flash memory).

 HCS12 devices have a 16-bit CPU. With a 16-bit address line, the CPU can handle up to 64K memory positions. Usually (as
a convention) each position holds one byte, which means that we can address up to 64 KB.

HHCCSS1122 FFAAMMIILLYY NNUUMMBBEERRIINNGG SSYYSSTTEEMM
There exist many HCS12 families (H,A,B,C,D,E,G,K,P,Q,X). We will be
working with the ‘D’ family (MC9S12D) which is designed for automotive
multiplexing applications. In the Dragon12-Light Board, we have:

 MC9S12DG256BCPV: As per the MC9S12D family datasheet, this

device belongs to the ‘DG’ family. The device has a temperature range
of -40C to 85C and it comes in the package 112LQFP package. The

device features: 256KB of Flash Memory, 12KB of RAM, 4KB of
EEPROM, 2 CANs, 2 SCI ports, 2 SPI ports, 1 I2C module, 2 ADC
modules (8 channels per module), 8 PWMs, and 91 I/O pins.

 What about the MC9S12DT128BCFU device?

HCS12 REGISTERS

The HCS12 CPU includes:
 General-purpose accumulators (A and B): These 8-bit

registers can be concatenated into a single 16-bit

accumulator (D) for certain instructions (DH=A, DL=B).

 Index Registers (X and Y): These 16-bit registers are used

for indexed addressing. The contents of these registers are
usually added to another value to form an effective address.

 Stack Pointer (SP): This 16-bit register points to the top byte
of the stack. A stack is a LIFO structure and can be located
anywhere in the standard 64 KB address space.

 Program Counter (PC): This 16-bit register holds the address
of the next instruction to be executed.

 Condition Code Register (CCR): This 8-bit register contain
five status indicators, two interrupt masking bits (I,X), and a
STOP instruction control bit (S). The status indicators are
Carry/Borrow (C), Overflow (V), Zero (Z), Negative (N), and
Half Carry (H).

An HCS12 microcontroller also includes I/O registers, subdivided into: data, data direction, control, and status registers. They
occupy the memory space (or address space).

Memory Space: It is the amount of memory (both data and instructions in the HCS12) that the processor can handle. The
16-bit address line in the HCS12 can handle 64KB (assuming each memory content is a byte). A straightforward
implementation would use a memory chip of 64 KB. However, in real-life applications, the memory space is filled by memory
devices of different technologies (Flash, EEPROM, SRAM), the stack, and I/O registers. The whole memory space does not
need to be populated.

7 0 7 0

15 0

A B

D

15 0X

15 0Y

15 0SP

15 0PC

7 0CCR
S X H I N Z V C

MC 9 S12 DX XXX B X XX

Flash
Memory

Temperature Range
C: -40° to +85°C
V: -40°C to 105°C

M: -40°C to +125°C

Flash rev.

Package
FU: 80 QFP

PV: 112 LQFP

D Family:
DP, DT,

DJ, DG, D

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

HCS12 ADDRESSING MODES

 Addressing modes determine how the CPU instructions access operands (usually memory locations) to be operated upon.
 Format of HCS12 instruction: OPCODE (1 to 2 bytes) | OPERANDS (0 to five bytes)
 Usually a CPU instruction utilizes only one addressing mode during the course of execution. But sometimes, a CPU

instruction might use more than one. Recall that the effective address is a 16-bit number.
 A multibyte number (more than 1 byte) is stored in memory from the most significant to the least significant byte, starting

from a low address to high addresses.

IINNHHEERREENNTT
Instructions using this addressing mode have either no operands or the operands are CPU registers. CPU does not access
memory locations. Examples of HCS12 instructions that use this mode:
nop ; This instruction has no operands

iny ; Y [Y] + 1

clrb ; B 0

coma ; A not(A)

tfr D,Y ; Y [D]

IIMMMMEEDDIIAATTEE
Here, the operand values are embedded in the instruction. The symbol ‘#’ indicates an immediate value.
ldaa #$12 ; A $12. The symbol ‘$’ indicates a hexadecimal value.

ldx #$4C32 ; X $4C32

ldy #$67 ; Y $0067

movb #$FE,$13A ; m[$013A] $FE. movb: Move byte.

movw #$1B,$100 ; m[$0100] $00, m[$0101] $1B. movw: Move Word. The

assembler expects a 16-bit value in this instruction. Thus, the value
$001B is stored starting from address $0100.

 movb, movw: In the examples, only the sources (#$FE,#$1B) use the immediate addressing

mode. The destination (addresses) are actually using the Extended Mode (see below).

DDIIRREECCTT
Here, instructions access operands from memory in the address range $0000 to $00FF. We

only indicate addresses from $00 to $FF (8 bits are included as operand, saving program

space and execution time). A program can be optimized by placing the most frequently
accessed data on this area of memory. This mode is also called zero-page addressing.
ldaa $3F ; A [$3F]. Note that since we do not use ‘#’, the provided value

indicates a memory address.

ldx $50 ; XH [$50], XL [$51]. A 16-bit value stored in memory

(starting from $50) is placed on X.

EEXXTTEENNDDEEDD
Similar to the Direct Mode, but we can access operands in the entire range from 0000 to $FFFF.

ldaa $E109 ; A [E109]. A gets the contents of the memory address E109

dec $910F ; m[$910F] [$910F] - $01

RREELLAATTIIVVEE
This addressing mode is used only by branch instructions. The distance of the branch (or jump) is called offset. The offset is
specified as a signed number (2’s complement). Branch instructions include an 8-bit OPCODE and an offset.
 Short branch instructions support an 8-bit offset, which allows a range between -128 ($80) to 127 ($7F).

 Long branch instructions support a 16-bit offset, which allows a range between -32768($8000) to 32767($7FFF).

 Loop primitive instructions (e.g.: DBEQ, DBNE) support a 9-bit offset, which allows a range of -256($100) to 255 ($0FF).

 A programmer usually specifies a label of the instruction to branch to. The assembler will calculate the offset value. If the

offset is zero, the CPU executes the instruction immediately following the branch instruction.

start …

 …

 …

 bmi start; if flag N (of CCR) =1 then PC PC + offset, else PC points to next instruction
 …

* Note that the next instruction is NOT necessarily located at PC PC+1

...

0x0100

0x0101

...

Address 8 bits

$00

$1B

movw #$1B,$100

...

0x0050

0x0051

...

Address 8 bits

$FA

$CE

X: $FACE

ldx $50

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

IINNDDEEXXEEDD
 Here, two components are used to compute the effective address of: an operand or the target of a branch instruction

o Base Address (stored in a base register: X,Y,SP, or PC)

o Offset: Distance of the target from the base address. It is a signed number (2’s complement)
o Effective address = Base Address + Offset. Instruction Syntax: offset, Base Address Register

 We now present the variations of the indexed addressing mode. In the following examples, we utilize the notation [] to

indicate the contents of either a register or a memory location. The symbol ‘:’ denotes concatenation of numbers.

CONSTANT OFFSET
The offset is a signed 5-bit, 9-bit, or 16-bit constant.

ldaa $0E,X ; A [$0E + [X]]. If X=$2000, then A gets the contents of the

memory address $200E

ldab -20,Y ; B [-20 +[Y]]. If Y=$1000, then B gets the contents of the

memory address $1000-$14

jmp $7A,PC ; PC [$7A+[PC]]. We do not get the contents of the effective

address, but rather jump to the effective address.
ldd 501,Y ; DH [501+[Y]], DL [501+[Y]+1]. If Y=$3000, then D gets

the contents of the memory addresses $31F5 and $31F6.

ACCUMULATOR OFFSET
Here, the offset is in an accumulator (which can be A, B, or D).
Operand Address = Base Address + Accumulator

ldaa B,X ; A gets the value of memory address B+X. B an X are unchanged

staa B,X ; m([B]+[X]) A. The contents of A are stored at address B+X.

ldx D,SP ; X [[D]+[SP]:[D]+[SP]+1]. X gets the value starting at

memory address D+SP. XH gets the value at address D+SP. XL gets the

value at the address D+SP+1.

16-BIT OFFSET INDIRECT
The offset is a 16-bit constant. The sum of the offset and the base address is called the
pointer (because it points to the address where the contents will be accessed). The memory
contents of this pointer represent the effective address (actually, effective address =
[pointer]:[pointer+1] as a memory location is 8-bits wide).

ldaa [$10C3,X] ; A [[$10C3+X]:[$10C3+X+1]]. A gets the value

pointed by the contents of addresses $10C3+X and $10C3+X+1

ldd [10,X] ; D gets the value pointed by the contents of memory

addresses $0A+X and $0A+X+1. If X=$1000, we first get

the 16-bit pointer value located at addresses $100A and

$100B, which is $2000. Then, we read the contents of the

memory addresses $2000 and $2001 and place it on D.

ACCUMULATOR D OFFSET INDIRECT
Similar to the 16-bit offset indexed indirect. With the difference that the offset is in D.

jmp [D,PC] ; If PC=$4000 and D=$01FF, we first read the contents of address

$41FF. Since this is a jump instruction, the target to jump to is a 16-bit

value, which we read starting from address $41FF. If we assume the 16-

bit value to be $5000, then we jump to this address (or PC $3000).

The jump instruction is special, because all it needs to get is the target
address (not the contents of that address).

...

0x31F5

0x31F6

...

Address 8 bits

$BE

$EF

D: $BEEF

ldd 501,Y

Y: $3000

...

0x11F0

0x11F1

...

Address 8 bits

$DE

$AF

X: $DEAF

ldx D,SP

SP: $1000

D: $01F0

-16 to 15

-256 to 255

-32768 to 32767

5-bit

9-bit

16-bit

Offset Range

...

0x100A

0x100B

...

Address 8 bits

$20

$00

D: $CAFE

ldd [10,X]

X: $1000

0x2000

0x2001

...

$CA

$FE

...

...

0x41FF

0x4200

...

Address 8 bits

$50

$00

PC: $5000

jmp [D,PC]

PC: $4000

0x5000

D: $01FF

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

AUTO PREDECREMENT, PREINCREMENT, POSTDECREMENT, OR POSTINCREMENT

Base index registers may be X, Y, or SP (does not make sense for PC as it will change the instruction flow). Tee CPU allows
the index register to be incremented or decremented by any integer value in the ranges of -8 to -1 or 1 to 8.

Pre-decrement/pre-increment: adds the base address and the offset to get an effective memory address. The effective
memory address is written into the base index register. Then, it accesses the contents of the memory location specified by the

effective address. In the examples, assume that X and Y were initially $1000.

staa 4,-X ; X $1000-4=$0FFC. The instructions then stores the contents of A on memory location $0FFC.

ldaa 2,+Y ; Y $1000+2=$1002. Then, A gets the contents of memory location $1002.

Post-decrement/post-increment: The effective address is the value on the base index
register. The instruction access the contents of the memory location specified by this
memory address. Then, a new effective address is created by adding the value of the base
index register and the offset, this new effective address is stored in the base index register.

In the examples, assume that X was initially $1000 and Y was initially $BEAD.
ldab 8,X+ ; B gets the memory contents of address $1000. Then $1008 is written

into X

sty 5,X- ; YH is stored in memory location $1000, YL is stored in memory location

$1001. Then X receives the new value of $0FFB.

WWRRAAPPAARROOUUNNDD FFOORR EEFFFFEECCTTIIVVEE AADDDDRREESSSSEESS
The effective address is a positive number whose range

is from $0000 to $FFFF. When computing the effective

address we can end up with a number that is out of

bounds ($0000 to $FFFF) or a negative number.

An efficient way to deal with this issue is to wraparound

the resulting numbers when they are out of bounds (as
in a clock).

For simplicity’s sake, let’s assume we are dealing with 4

bits. The effective address range is then $0 to $F.

If for example, we add the numbers 14($E) and $6, the

results is 20($14). 20 is out of bounds, so we

wraparound, and the answer is $4.

Likewise, if we subtract 9 from 2, the result is -7, which

is out of bound. So, we wraparound (this time in the
opposite direction), and the answer is 9.

Addition of unsigned integers
To implement it, let’s use the example of 20+6 in binary form. We notice that if we only keep the 4
LSBs (i.e., we omit the carry), the remaining answer is the one we are looking for.

Subtraction of unsigned integers
Here, if we use the example of 2 - 9 in binary, we assume we have a borrow,
and the answer would be 1001 with a borrow for the next stage. If we just use the 4 LSBs and discard
the borrow, the remaining answer is the one we are looking for.

About implementing the subtraction of unsigned numbers using 2’s complement representation
The arithmetic circuits inside the HCS12 support unsigned and signed operations. In particular the
subtraction of unsigned numbers can be seen as a 2’s complement operation. In the ‘2 - 9’
example, we notice that after sign-extending (this also makes sure we do not overflow), if we just
keep the 4 LSBs, we get the answer we are looking for (if we think of the result as an unsigned
number). Moreover, we can use the MSB (which is NOT the carry out) as our borrow bit.

In general, the addition/subtraction of unsigned/signed numbers uses the same hardware, it’s just
that we interpret the result in a different way. The only difference though, is that the overflow in
unsigned numbers is the carry out, this is not the case of 2’s complement numbers.

2 = 0 0 0 1 0 +

-9 = 1 0 1 1 1

-7 = 1 1 0 0 1

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=1

c 0
=0

$5

...

0x1000

0x1001

...

Address 8 bits

$BE

$AD

sty 5,X-

X: $1000

Y: $BEAD

X: $0FFB

14 = 1 1 1 0 +

7 = 0 1 1 1

21 = 1 0 1 0 1

c 4
=1

c 3
=1

c 2
=1

c 1
=

1

c 0
=0

$5

2 = 0 0 1 0 -

9 = 1 0 0 1

9 = 1 0 0 1

b 4
=
1

b 3
=0

b 2
=0

b 1
=1

b 0
=0

0000

1000

01001100

0010

01101010

1110

0001

01111001

0011

01011011

1101

1111

0

8

412

214

610

1

79

3

511

13

15
-1

-2

-3

-4

-5

-6

-7
-8

Address
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

14+6

2-9

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

ADDRESSING MORE THAN 64 KB

The HCS12 incorporates hardware that supports addressing a
larger memory space than the standard 64 Kbytes. The expanded
memory system is accessed using a bank-switching scheme.

The HCS12 treats the 16 Kbytes of memory space from $8000 to

$BFFF as the program memory window. The system includes an

8-bit page register (PPAGE), which allows up to 256 16KB

program memory “pages” to be switched into and out of the
memory window. This provides up to 256 × 16𝐾𝐵 = 212𝐾𝐵 = 4𝑀𝐵 of paged program memory.

 A bank-switching scheme is preferred over a large linear address space. In systems with large linear address spaces,

instructions require more bits for the address line, thereby increasing CPU overhead.

A SAMPLE OF HCS12 INSTRUCTIONS

Here, we provide examples on the first four group of HCS12 instructions. Throughout the course, we will be referring to the

HHCCSS1122 CCPPUU RReeffeerreennccee MMaannuuaall RReevv.. 44..00, which contains the entire instruction set, machine code, supported addressing modes,
and which CCR bits are affected (if any).

LOAD AND STORE INSTRUCTIONS
 Load instructions copy memory contents into an accumulator or register. Load instructions (except LEA_ instructions)

affect CCR bits (Z, N, V).

 Store instructions copy the content of a CPU register to memory. Store instructions update the N an Z bits of CCR.
 Table 5.1 of the HCS12 CPU Reference Manual lists the available instructions. Here are some examples:

Instruction Operation Addressing Mode

ldx #1023 X $3FF Immediate

ldab $04FA B [$04FA] Extended

ldd 6,Y D [6+[Y]]:[6+[Y]+1] Indexed - constant offset (5 bits)

lds D,X SP [[D]+[X]] Indexed - accumulator offset

ldy $FE Y [$FE]:[$FF] (YH [$FE], YL [$FF]) Direct

ldaa [$BED,X] A [[$BED+[X]]] Indexed - 16 bit offset indirect

ldd [$FEE,Y] D [[$FEE+[X]]:[$FEE+[X]+1]] Indexed - 16-bit offset indirect

leax -17,X X [X]-17 *X gets the effective address, CCR is not modified Indexed - constant offset (9 bits)

staa 256 m[$100] A Extended

stx [$BEE,SP] m[ptr]:m[ptr+1] X, ptr=[$BEE+[SP]]:[$BEE+[SP]+1] Indexed - 16-bit offset indirect

std [D,X] m[ptr]:m[ptr+1] D, ptr=[[D]+[X]]:[[D]+[X]+1] Indexed - Accumulator D offset indirect

stab [$C0,A] m[[$C0+[A]]] B Indexed - 16-bit offset indirect

sts $FAD,Y m[$FAD+[Y]:$FAD+[Y]+1] SP Indexed - constant offset (16 bits)

TRANSFER AND EXCHANGE INSTRUCTIONS
 Transfer instructions copy the contents of a register of accumulator into another register or accumulator. Source content is

not changed by the operation.
o Transfer register to register (TFR) is a universal transfer instruction. A TFR instruction DOES NOT affect the CCR bits

(except when CCR is the destination register). The same goes for TSX, TSY, TXS, TYS, and TPA. TAP

(transferring from A to CCR) does affect the CCR bits.

o Transfer A to B (TAB) and Transfer B to A (TBA) instructions do affect the N,Z, V bits of CCR.

o Sign extension: When transferring from a 8-bit register into a 16-bit register, the 8-bit number is sign-extended to 16
bits. Here, the 8-bit number is assumed to be represented in 2’s complement.

o The sign extend 8-bit operand (SEX) instruction is a special case of the universal transfer instruction. This instruction

sign-extends an 8-bit number to 16 bits. The 8-bit number is copied from A, B, or CCR into D, X, Y, or SP. This

instruction does not affect the CCR bits.

 Exchange instructions exchange the contents of pairs of registers or accumulators. When the first operand in an EXG

instruction is 8-bits and the second operand is 16 bits, the 8-bit operand is zero-extended to 16 bytes as it is copied into

the 16-bit register. These instructions (EXG, XGDX, XGDY) do not affect the CCR bits.

 Table 5.2 of the HCS12 CPU Reference Manual lists the available instructions. The addressing mode of this instruction is

Inherent. Here are some examples:

...

0x8000

Address 8 bits

...

0xBFFF

...
...

0

1

255

Memory Pages

PPAGE

8

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

6 Instructor: Daniel Llamocca

Instruction Operation Comments
tfr CCR,X X [CCR] Sign extension to CCR

tfr Y,D D [Y]

tfr X,A A [XL], XL=X(7…0) Only the lower byte of X is transferred to A

tap CCR [A]

tsx X [SP]

tfr SP,A A [SPL], SPL=SP(7…0) Only the lower byte of SP is transferred to A

sex A,D D [A] A is sign-extended to 16 bits

exg Y,B B [YL], Y $00:[B] Zero extension to B

xgdy D Y, Y D

exg CCR,D D $00:[CCR], CCR [DL] Zero extension to CCR

MOVE INSTRUCTIONS
Move instructions allow the transferring of data from:
 Memory location to another memory location.

 CPU registers or values to memory (and vice versa).

There are two instruction: movb <src>,<dest> (move byte) and movw <src>,<dest> (move word). Six combinations of

immediate, extended, and indexed addressing are allowed to specify source and destination addresses:
 Extended to Extended
 Immediate to Extended
 Extended to Indexed

 Indexed to Extended
 Indexed to Indexed
 Immediate to Index

Note that using the Immediate addressing mode for the destination would not make sense as the Extended mode provides an
instant address. Also, we can also use the Direct mode, as it is a version of Extended mode. Here are some examples:

Instruction Operation
Addressing Mode

Source , Destination
movb $1F00, $4000 m[$4000] [$1F00] Extended , Extended

movb #$FA, $3FFF m[$3FFF] $FA Immediate, Extended

movb $2000, 4,-X m[[X]-4] [$2000] Extended, Indexed (pre-decrement)

mobw [$FF,X] ,$1FFF m[$1FFF] [[$FF+[X]]:[$FF+[X]+1]] Indexed(16-bit offset indirect), Extended

mobw 2,X, 0,Y m[Y] [X+2] Indexed (constant offset), Indexed (constant offset)

mobw #$09, D,Y m([D]+[Y]) $00, m([D]+[Y]+1) $09 Immediate, Indexed (Acc. D offset)

ADD AND SUBTRACT INSTRUCTIONS
 8- and 16-bit addition and subtraction can be performed between registers or between registers and memory. Special

instructions support index calculation. Instructions that add the carry bit (or borrow in subtraction) in the condition code
register (CCR) facilitate multiple precision computation.

 Table 5.4 of the HCS12 CPU Reference Manual lists the available instructions. Here are some examples:

Instruction Operation Comments Addressing Mode
adda #$F1 A [A]+$F1 Immediate

abx X $00:[B] + [X] B is zero extended Inherent

adca $1001 A [A] + [$1001] + C C: carry bit of CCR Extended

addd $DEED D [D] + [$DEED]:[$DEED+1] Extended

suba 2,X A [A]-[2+[X]] Indexed - constant offset

subd $FE,Y D [D] - [$FE+[Y]]:[$FE+[Y]+1] Indexed - constant offset

sbcb D,X B [B]-[[D]+[X]]-C
C: carry bit of CCR

(interpreted as borrow)
Indexed - Acc. offset

INSTRUCTION QUEUE

 The HCS12 uses an instruction queue to increase execution speed. The queue operation is automatic, and generally
transparent to the user.

 Queue logic prefetches program information and positions it for execution (instructions are executed sequentially, one at a

time). The HCS12 has the advantages of independent fetches (unlike a pipelined CPU that can execute more than one
instruction at the same time), and maintains a straightforward relationship between bus and execution cycles, this
facilitates program tracking and debugging.

 There are three 16-bit stages in the instruction queue. Instructions enter the queue at stage 1 and roll out after stage 3.
We can select individual bytes in the queue. An OPCODE prediction algorithm determines the location of the next OPCODE
in the instruction queue.

 Each instruction refills the queue by fetching as many bytes as the instruction has. Program information is fetched in
aligned 16-bit words.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

7 Instructor: Daniel Llamocca

EXAMPLES

 Write an instruction sequence to swap the contents of memory locations $0F00 and $0F0A.
ldaa $F00

movb $F0A, $F00

staa $F0A

 Write an instruction sequence to subtract the number stored at $2000 from that stored in $2001, and store the difference

at the address X (i.e., at the address whose value is X)
ldaa $2001

suba $2000

staa 0,X

 Write an instruction sequence to add B to the 16-bit word stored in memory locations $A000 and $A001. Treat the value

in B as a signed number. Store the result starting at a memory address whose value is located at address Y+21.
sex B,D

addd $A000

std [Y,21]

 Variables in memory. In the following high-level language sequence of instructions, the variables i, j, and k are located in
memory locations $A000, $A005, and $A00A. Write the equivalent assembly instruction sequence.
i = 21; j = 50

k = i + j - 5

Assembly instructions:
ldaa $A000 ; A $15

adda $A005 ; A A + $32 = $47

suba #$5 ; A A - $5 = $42

staa $A00A ; m[$A00A] $42

 Give an instruction that can store the contents of Y starting at a memory location with an address smaller than X-9.
sty -10,X

 The numbers $15, $78, $FA, and $E4 are stored at memory locations $1000, $1001, $1002, $1003 respectively. Write

an instruction sequence that adds up all these numbers and store the result in the address whose value is the contents of

Y. Treat the numbers as unsigned integers and use 16 bits for the results to ensure the correctness of the answer.
ldaa $1000 ; A [$1000]

exg A,X ; X $00:[A], A XL

ldab $1001 ; B [$1001]

abx ; X $00:[B] +[X]

ldab $1002

abx

ldab $1003

abx

stx 0,Y ; m[Y] [X]

 Redo the previous example, but treat the numbers $15, $78, $FA, and $E4 as signed.

ldaa $1000 ; A [$1000]

sex A,D ; D [A] (A is sign-extended)
std 0,Y

ldab $1001 ; B [$1001]

sex B,X ; X [B] (B is sign-extended)
stx $BFFF

ldd 0,Y

addd $BFFF

std 0,Y

ldab $1002 ; B [$1002]

sex B,X ; X [B] (B is sign-extended)
stx $BFFF

ldd 0,Y

addd $BFFF

std 0,Y

ldab $1003 ; B [$1003]

sex B,X ; X [B] (B is sign-extended)
stx $BFFF

ldd 0,Y

addd $BFFF

std 0,Y ; m[Y] [D]

